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Abstract The selection of appropriate test cases is an important issue in software 
engineering. A number of methods are known for the selection of a test suite 
based on the specification and an implementation under test given in the form 
of a finite state machine (FSM). In realistic applications, this specification 
evolves incrementally throughout incorporating frequent modifications. In this 
paper, we adapt three well-known test derivation methods, namely the W, Wp, 
and HIS methods, for generating tests that would test the modified parts of the 
evolving specification. Application examples are provided.   
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1. INTRODUCTION 

Many methods have been developed for deriving tests for a system 
represented by a Finite State Machine (FSM) model. The purpose of these 
tests is to determine whether an implementation of the system conforms to 
(i.e., is correct with respect to) its specification. Usually a conforming 
implementation is required to have the same I/O behavior.  

In realistic applications, maintaining a system modeled by a given 
specification machine involves modifying its specification as a result of 
changes in the users’ requirements and designers implement incrementally 
these modifications. Testing the whole system implementation after each 
modification is considered expensive and time consuming. Therefore, it is 
important to generate tests (called re-tests) that would only test the modified 



  
 
parts of the implementation that correspond to the modified parts of its 
specification. This would reduce the maintenance cost of such a system, 
which is about two-thirds of the cost of the software production [10]. 

In this paper, we present test generation methods (called henceforth as re-
testing methods) that select tests (called re-tests) for testing the modified 
parts of the system specification, in order to check that these modifications 
were correctly implemented in the system implementation. Here we assume 
that the parts of the system implementation that correspond to the 
unmodified parts of the system specification are left intact. Moreover, we 
also reasonably assume that before modifying the system specification, its 
implementation was tested and found conforming to this specification. These 
methods are based on well-known test derivation methods called the W[1], 
Wp [3], and HIS [8] methods.  

The problem of deriving re-testing sequences can be converted into the 
problem of test derivation from an FSM with a fault function [7] or from its 
generalization [5]. In this case, potential implementations are represented as 
all complete sub-machines of a given nondeterministic FSM that is called a 
mutation machine. However, the mutation machine from which re-testing 
sequences are derived, is special. Each unmodified specification transition is 
a deterministic transition of the mutation machine while each modified 
transition becomes chaotic; each pair (state, output) becomes possible as its 
tail state and output in a potential implementation. In other words, on one 
hand, the mutation machine has a number of deterministic transitions that 
can be used deriving a test suite, while on the other hand, a number of all 
possible paths that include modified transitions becomes exponential. Based 
on these features, we propose a proper technique for test derivation. First, we 
do not explicitly enumerate all possible implementation paths under an 
appropriate input sequence and secondly, we essentially use unmodified 
specification transitions that still remain deterministic in the mutation FSM. 
However, we always mention when our method delivers the same test suite 
as the methods for test derivation from an arbitrary mutation machine 
proposed in [7], [5]. 

This paper is organized as follows. Section 2, describes the finite state 
machine model, and Section 3 briefly describes the W, Wp, and HIS 
methods for generating tests from a given FSM specification. Based on these 
methods, our re-testing methods are presented in Section 4 with appropriate 
application examples. Section 5 concludes the paper. 

2. FINITE STATE MACHINES 

A deterministic finite state machine is a 7-tuple M = (S, X, Y, δ, 



  
 
λ, DM, s1), where: S is a finite set of states, s1 is the initial state, X is a finite 
set of input symbols, Y is a finite set of output symbols, δ is a next state (or 
transition) function:δ: DM --> S, λ is an output function: λ: DM --> Y, and  
DM is a specification domain: DM ⊆ S ×X. 

We use as in [3] the notation “(si -x/y-> sj)” to indicate that the FSM M at 
state si responds with an output y and makes the transition to the state sj 
when the input x is applied. State si is said to be the head or starting state of 
the transition, while sj is said to be the tail or ending state of the transition. If 
we are not interested in the output we write “si-v->sj” when an input 
sequence v is applied at state si. FSM M is said to be completely specified or  
simply a complete FSM, if DM = S × X; otherwise, M is said to be partially 
specified or simply a partial FSM. In the complete FSM, we omit the 
specification domain DM, i.e. a complete FSM is a 6-tuple M = (S, X, Y, δ, 
λ,  s1). The concatenation of sequences v1 and v2 is the sequence v1.v2. For 
a given alphabet Z, Z* is used to denote the set of all finite words over Z. Let 
V be a set of words over alphabet Ζ. The prefix closure of V, written Pref(V), 
consists of all the prefixes of each word in V, i.e. Pref(V) = {α | ∃ γ (α.γ ∈ 
V)}. The set V is prefix-closed if Pref(V) = V.   

Let MS =(S, X, Y, δS, λS, DS, s1) and MI = (T, X, Y, ∆I, ΛI, DI, t1) be two 
FSMs. In the following sections MS usually represents a protocol 
specification while MI denotes an implementation, and thus, FSM MI is 
further assumed to be complete. Given an input sequence α = x1 x2 .. xk ∈ 
X*, α is called a defined input sequence(DIS) at state si ∈ S, if there exist k 
states si1, si2, ..., sik ∈ S such that there is a sequence of specified transitions 
si- x1-> si1 --> ... --> si(k-1)- xk-> sik in the finite state machine MS. 
Hereafter, DIS(MS|si) will be used to denote the set of all the defined input 
sequences at state si of machine MS.  

We say that states si of MS and tj of MI are compatible if DIS(MS|si) ∩ 
DIS(MI|tj)=∅ or if ∀ α ∈ DIS(MS|si) ∩ DIS(MI|tj) it holds that λS(si, α) = 
ΛI(tj, α). Otherwise; we say that states si and sj are distinguishable. Input 
sequence α ∈ DIS(MS|si) ∩ DIS(MI|tj) such that λS(si, α) ≠ ΛI(tj, α) is said 
to distinguish the states si and tj. An FSM is said to be reduced if its states 
are pair-wise distinguishable. If the FSMs happen to be complete, then the 
definition of compatible states reduces to the definition of equivalent states 
(see for example, [4]).  

3. REVIEW OF THE W, WP, AND HIS METHODS  

In the following section we briefly describe test derivation methods 
where the specification is given as a reduced FSM MS while an 
implementation under test (IUT) is modeled by a complete FSM MI.  



  
 

Let ti be a state of MI and sj be a state of MS. Consider set V of input 
sequences such that V ⊆ DIS(MS|sj). State ti is said to be equivalent to sj 
with respect to the set V  (written as ti ≅V sj), if ΛI(ti, α) = λS(sj, α) holds 
for any α ∈ V. In other words, for each input sequence of V, a behavior of 
MI at state ti coincides with that of MS at state sj. 

We say that MI conforms to MS if and only if t1 ≅DIS(MS|s1) s1, where t1 
and s1 are the initial states of MI and MS, respectively. In other words, for 
each input sequence where a behavior of MS is defined, MI has the same 
behavior, i.e. the implementation is quasi-equivalent to the specification [4]. 
This conformance relation corresponds to the notion of weak conformance 
[9]. 

A set Q of input sequences is called a state cover set of FSM MS if for 
each state si of S, there is an input sequence αi∈ Q such that s1-αi->si.  

Usually the testing methods reviewed in this section use state 
identification facilities in order to check that each state and each transition 
defined in the specification also exists in the implementation. These facilities 
have certain input/output behaviors that can distinguish the states of an FSM. 
Given a reduced FSM MS and a state si ∈ S, a set Wi ⊆ DIS(MS|si) of 
defined input sequences at state si is called a state identifier of state si if for 
any other state sj there exists α  ∈ Wi ∩ DIS(MS|sj) such that λS(si,  α) ≠ 
λS(sj,  α). We now define a collection of state identifiers that has been 
named a family of harmonized identifiers [6], [8] or a separating family [11]. 
A separating family is a collection of state identifiers Wi, si∈S, which satisfy 
the condition that for any two states si, and sj, i ≠ j, there exist β ∈ Wi and γ 
∈ Wj which have common prefix α such that α ∈ DIS(MS|si) ∩ DIS(MS|sj),  
and λS(si,  α) ≠ λS(sj,  α). A separating family exists for any reduced (partial 
or complete) machine. 

A characterization set of the FSM MS, often simply called a W set, is a 
set of input sequences which satisfies the following conditions: 

(1) For any sk ∈ S, W ⊆ DIS(MS|sk),  
(2) For any two states si, and sj, i ≠ j, there exists β ∈ W such that   

λS(si, β) ≠ λS(sj, β). 
A W set always exists for a reduced completely specified machine. 

However, the W set does not always exist for a reduced partially specified 
machine.  

Given a specification reduced FSM MS = (S, X, Y, δS, λS, DS, s1), |S|=n, 
and a complete implementation FSM MI = (T, X, Y, ∆I, ΛI, t1) such that 
|T|=n, let W be a characterization set of MS (if exists) and F = {W1,…, Wn} 
be a separating family of MS.  

All the methods have two phases. In the first so-called state identification 
phase, they establish a one-to-one mapping hS-I: S → T by the use of a 
characterization set W or a separating family F. Given a prefix-closed state 



  
 
cover set Q = {α1, α2,…, αn} of the specification FSM, for each state sj ∈ S, 
the state identification phase comprises the sequences: r.αj.Wj (HIS method)   
or  r.αj.W (W and Wp methods). 

We note that, if the specification FSM MS is partial, a characterization set 
W may not exist; in this case, the W and Wp methods cannot be applied. 
However, the HIS method can be applied. 

If FSM MI passes the state identification test sequences, then there exists 
one-to-one mapping hS-I: S → T such that: h(sj) = t ⇔  sj ≅ Wj  t  in the HIS 
method, and  h(sj) = t ⇔  sj ≅ W  t  in the W and Wp methods. 

The second so-called transition testing phase, assures that for each state 
s∈S, and input x∈X that is defined at state s the mapping hS-I satisfies the 
following property:  

λS(s, x) = ΛI(hS-I(s), x) and hS-I(δS(s, x)) = ∆I(hS-I(s), x)  (X-1) 
For this purpose, for each sequence αj ∈ Q that takes the specification 

FSM to appropriate state sj, and each x∈X that takes the MS from state sj to 
state sk, the testing transition phase includes the set of sequences:  

r.αj.x.Wk    in the HIS and Wp methods, where Wk is a state identifier 
of the state sk in the specification FSM (for the Wp method, we have 
Wk ⊆W ) or  
r.αj.x.W    in the W method 

    If FSM MI passes the test sequences of both testing phases, then it is 
quasi-equivalent to the specification FSM, i.e. is a conforming 
implementation. If the specification FSM is complete then the quasi-
equivalence relation reduces to the equivalence relation, i.e. the specification 
FSM and its conforming implementation have the same Input/Output 
behavior. 

4. FSM BASED RE-TESTING 

4.1 Problem Definition  
Let the reduced FSM MS = (S, X, Y, δS, λS, DS, s1) be the specification 

of a given system. We assume that the complete implementation FSM       
MI = (T, X, Y, ∆I, ΛI, t1) of MS with the same number of states has been 
tested and found conforming to MS.  Therefore, there exists a one-to-one 
mapping hS-I: S → T such that for each state s∈S and input x∈X that is 
defined at state s, (X-1) holds. 

    Let the reduced MS' = (S, X, Y, δS, λS, DS', s1) be the modified 
specification, and MI'=(T, X, Y, ∆I, ΛI, t1) be the modified implementation 
that must conform to MS'. We assume that only transitions corresponding to 
the modified parts of MS' have been changed in MI' and we want to generate 
test sequences for the modified parts of the system specification, in order to 



  
 
check that these modifications were implemented correctly in the modified 
implementation MI'. In other words, for each unmodified transition            
(sj-x/y->sk) of the MS', we assume that transition (hS-I(sj)-x/y->hS-I(sk)) has 
not been changed in the modified implementation MI'. We note that in case 
where new states are added (or deleted) to (or from) MS, we let S' denote the 
set of states of MS' and T' denote the set of states of MI', respectively.  

In general, we have the following types of modifications that can be 
made in MS and implemented by a designer in MI:  

(1) outputs of some transitions are modified,  (2) tail states of some 
transitions are modified, (3) outputs and tail states of some transitions are 
modified, (4) new transitions are added (5) some transitions are deleted, (6) 
new states are added, and (7) some states are deleted. 

4.2 The Re-testing Methods 

The re-testing methods adapted for the W, Wp, and HIS test derivation 
methods have also two phases. In the first phase, re-tests are selected in 
order to check (or re-identify) some states of the modified specification in 
the new implementation, and in the second re-testing phase, re-tests are 
selected to check each modified transition for correct output and tail state. 
Here, we examine different cases that can be used to generate short re-testing 
test sequences.  

For convenience, hereafter, we use the input symbols a and b for 
unmodified transitions, and x and z for modified ones. 

4.3 Case-1: The Unmodified Part of the Modified 
Specification is Reduced 

Here we assume that the unmodified part UP-MS' of the modified 
specification MS' is reduced. Then, there exist state identifiers W1,…, Wn, 
which satisfy the following conditions: 1) each Wi is a subset of the defined 
input sequences at state si∈S  in the UP-MS', 2) given two states si, and sj,    
i ≠ j, there exist sequences in Wi and Wj with the common prefix β such that 
λS(si,  β) ≠ λS(sj,  β).  

We note that since the unmodified part of the specification can be partial, a 
characterization set W may not exist. However, we can always select state 
identifiers with the above conditions.  

4.3.1 General solution 

For each modified edge (sj-x/y->sk), its corresponding re-testing test 
cases are formed as follows: 



  
 

If we use the HIS or Wp methods:  r.αj.x.Wk,               (1-a) 
where Wk is a state identifier of state sk.  
If a characterization set W exists and we use the W method: r.αj.x.W   (1-b) 

 
Theorem 1. Given a modified specification MS' and its implementation 

MI', let the unmodified part of MS' be reduced and have state identifiers W1, 
…, Wn. If implementation MI' passes the re-testing test suite which consists 
of the union of the test cases over all modified transitions as given in 
Formulae (1-a) or (1-b), then the implementation MI' is quasi-equivalent to 
MS'.  

We omit the proof of Theorem 1 since it is a particular case of Theorem 2. 
We note that if the specification FSM is complete then the above case is a 

particular case of the advanced procedure in [7] since each state identifier is 
a so-called stable state identifier, i.e. is a state identifier of the corresponding 
state in each potential implementation. 

4.3.2 An Optimized Solution 

We observe that a sequence that distinguishes two states of the initial 
specification and traverses only unmodified transitions when applied at these 
states, also distinguishes the corresponding states of the modified 
implementation MI’.  Moreover, when the unmodified part of the modified 
specification is reduced, the mapping hS-I(s): S →T between the initial 
specification and its conforming implementation is the only candidate that 
can satisfy (X-1) for the modified specification and its implementation. 
Therefore, we do not need to re-identify states of the modified 
implementation.  Moreover, the test suite constructed using the formulae of 
the general solution may be shortened if we use, when checking certain 
transitions, shorter state identifiers that pass through already tested 
transitions rather than those generated only from the unmodified part of the 
modified specification. In other words, instead of using state identifiers 
derived in advance, we can generate shorter state identifiers, as modified 
transitions are tested. For this purpose, we assume that a linear order “<” 
over modified transitions of the specification is given. This order satisfies 
the following property: If αr.z∈Q is a prefix of αj∈Q, then for any two 
modified transitions (sr-z->sl) and (sj-x->sk), transition (sr-z->sl)<(sj-x->sk).  
In this case, when checking a modified transition, we can use lower order 
transitions (or already checked transitions) to generate shorter re-testing 
sequences. The reason is that if the implementation at hand passes retesting 
sequences for transition (sr-z/y->sl) then it has the corresponding transition 
(hS-I(sr) -z/y-> hS-I(sl)), and this transition can be used for retesting a higher 
order transition. In this section, we illustrate by an example the advantage of 



  
 
using such a linear order. However, we do not discuss how to derive an order 
that provides the shortest re-testing sequences. 

For each modified edge (sj-x->sk), its corresponding re-testing test cases 
are formed as in Formulae (1-a) or (1-b). However, as a state identifier of 
state sk, we use state identifier Wk (or characterization set W in W method) 
of the part of MS that comprises unmodified transitions or modified 
transitions (sr-z->sl) where (sr-z->sl) < (sj-x->sk). In other words, for testing 
transition (sj-x->sk) the state identifier Wk has sequences that  if applied at 
state sk only traverse unmodified transitions or modified transitions           
(sr-z->sl) < (sj-x->sk). This allows, when checking a modified transition, the 
use of already re-checked transitions (or lower order transitions) in order to 
generate shorter state identifiers.  

Theorem 2. Given a modified specification MS' and its implementation 
MI', let the unmodified part of MS' be reduced, and for each modified 
transition (sj-x->sk) Wk is a state identifier of state sk in the part of MS that 
comprises unmodified transitions or modified transitions (sr-z->sl) < (sj-z-
>sk). If implementation MI' passes the re-testing test suite which consists of 
the union of the test cases over all modified transitions as given in Formulae  
(1-a) or (1-b), then the implementation is quasi-equivalent to MS'.  

Proof. A proof of Theorem 2 is given in [2]. 
As an example for the general and optimized solution methods based on 

the HIS method, we consider the modified specification FSM M1 shown in 
Fig. 1. FSM M1 has the input set X={a, b, c}, output set Y ={y1, y2, y3}. The 
labels of the modified transitions are shown in bold. The unmodified part of 
FSM M1 has a separating family {w1, w2, w3, w4} of state identifiers, where 
w1= {bb}, w2= {bb},  w3= {bb, c} and w4= {bb, c}. In fact, for each state si 
of M1 we have the following input/output sequences in response to wi.  

 s1 s2 s3 s4 
b b y1 y2 y2 y2 y2 y1 y2 y1 
c   y2 y1 

Table 1. Responses of M1 to state identifiers (if defined) 

S 4

s 2
b /y 1

a /y 3 c / y 2s 1
s 3

c / y 2

b /y 2

a /y 1

a /y 4

b /y 2

a /y 2

c /y 1

c / y 1

b /y 2

c /e
s '1

c /e

a /e

b /e

c / f

s ' 2

s ' 4

s ' 3b / e

a / f

c /e b / f

b / f a /e

a / f

           
Figure 1. Specification M1      Fig. 2. Specification MS' 

None of the above state identifiers passes through a modified transition if 
applied at an appropriate state, and thus, the unmodified part of MS' is 



  
 
reduced. According to the general solution, in order to re-test the modified 
transitions, the following re-testing sequences of length 24 are generated 
using Formula (1-a): {r.α1.a.w2+r.α2.c.w4+r.α4.a.w3} = {r.ε.a.bb, r.b.c.bb, 
r.b.c.c, r.ba.a.bb, r.ba.a.c}, where α1= ε, α2= b and α4= ba are the 
corresponding sequences of the state cover set . 

We now use the following linear order over modified transitions           
(s1-a->s2) < (s4 a->s3) < (s2-c->s4). In order to re-test the modified 
transition (s1-a-> s2), the re-testing test sequence {r.a.w2=r.a.bb} is used. If 
the implementation at hand passes this sequence, then we have the following 
responses to the input  a : 

 At state hS-I(s1): y3, at state hS-I(s2): y1, and at state hS-I(s3): y2, 
Consequently, in order to re-test transition (s4-a->s3), the re-testing test 

sequence r.α4.a.a = r.b.a.a.a will be enough instead of r.α4.a.w3, since r.α4 
reaches state s4 through unmodified transitions and if afterwards, the 
modified implementation produces the expected output y4 to the input 
symbol a, then a becomes a distinguishing sequence for the part of the 
specification comprising unmodified transitions and transitions (s1-a->s2) 
and (s4-a->s3), where for the last transition only its output has been checked; 
therefore, a is a distinguishing sequence for the corresponding part of the 
modified implementation. 

Afterwards, in order to check the ending state s4 of the modified 
transition (s2-c->s4), the distinguishing sequence a can be used instead of 
the previous state identifier w4= {bb, c}. Hence, the re-testing test sequence 
of this transition is r.α2.c.a = r.b.c.a. Therefore, according to the optimized 
solution method, in order to re-test the modified transitions, the following re-
testing sequences are generated using the above linear order and Formulae  
(1-a): {r.a.bb + r.b.a.a.a + r.b.c.a}. 

The total length of these sequences is 13, where the total length of those 
generated using Formula (1-a) of the general solution method is 24. The HIS 
method generates a test suite of length 51 if the whole specification of MS' is 
considered for test derivation. 

4.4 Case-2: Each State of the Modified Specification is 
Reachable Through Unmodified Transitions and the 
Unmodified Part is Not Reduced. 

In some cases, the unmodified part of the modified specification MS' is 
not reduced. However, each state of MS' is reachable through some 
unmodified transitions. Since each state of MS' can be reached through 
unmodified transitions, the only possible correct mapping between the states 
of MS' and MI' is the old mapping established between the states of MS and 
MI. Therefore, in order to check that this mapping still holds for the states of 



  
 
the modified specification and implementation the only states that have state 
identifiers passing through modified transitions have to be re-identified in 
the new implementation.  Moreover, in order to re-identify such a state, it is 
enough to apply only the sequences of the corresponding state identifier that 
pass through modified transitions. 

Let Q be a prefix-closed state cover set such that its sequences do not 
traverse modified transitions if applied at the initial state of MS'. Let also F = 
{W1, …, Wn} be a separating family of the modified specification, and  W 
be a characterization set (if exists). 

i) State re-identification phase 
For each state sr such that some sequences of Wr traverse modified 

transitions if applied at sr the state re-identification sequences are formed as 
follows:  

 r.αr .Wr’       (2-1a) 
where Wr’⊆Wr (or Wr’⊆W for the W and Wp methods) comprises each 
sequence of the state identifier Wr (of the characterization set W) that,  if 
applied at state sr of the modified specification, traverses a modified 
transition. We note that each state of MS' for which all sequences of the state 
identifier traverse only unmodified transitions, does not need to be re-
identified. 

ii) Re-testing modified transitions phase 
For each modified edge (sj-x->sk), its corresponding re-testing test 

sequences are formed as shown in Formulae (1-a) and (1-b). 
Theorem 3. Given the modified specification MS' and its implementation 

MI', let F = {W1, …, Wn} be a separating family of MS' and W be a 
characterization set of MS' (if exists). Let also Q be a prefix-closed state 
cover set of MS' such that each sequence of the set Q does not traverse a 
modified transition if applied at the initial state. If implementation MI' 
passes the re-testing test suite which is the union of the re-testing test 
sequences given in Formula (2-1a) and Formulae (1-a) or (1-b), then the 
implementation is quasi-equivalent to MS'.  

We omit the proof of Theorem 3 since it is a particular case of Theorem 4.  
We note that union of the test cases given in Formula (2-1a) and Formula 

(1-a) coincides with the test suite returned by procedures in [7], [5], since 
both methods return a test suite without input sequences that traverse only 
unmodified transitions. However, here we underline the advantage of 
selecting a state cover set and state identifiers with sequences that do not 
traverse any modified transition. In this case, the old image of a 
corresponding state of a modified specification must be preserved and 
therefore, there is no need to check unmodified transitions at the 
corresponding state. 



  
 
4.5 Case-3: Some States are only Reachable Through 

Modified Transitions 

In some cases, the unmodified part of the modified specification MS' is 
not reduced and some states of MS' are only reachable through modified 
transitions. This case always holds when additional states are introduced 
when modifying the specification. Here, for the subset of states, say Sr-m of 
the modified specification that are only reachable through modified 
transitions, the old conforming mapping might not be preserved between the 
new specification and its implementation, i.e. some sk ∈ Sr-m of the 
modified specification might be mapped to a new state of its implementation 
(say tl ∈ Tr-m), different from tk. Each such state must be re-identified in the 
new implementation and moreover, differently from former two cases, we 
have to check unmodified transitions from this state. 

As an example, we modify the specification MS shown in the upper part 
of Fig. 3 and obtain the FSM MS' shown in the upper of Fig. 4. The modified 
transitions are shown as bold lines. We note that the mapping between states 
of MS and its conforming implementation MI, shown in the lower part of 
Fig. 3, is hS-I(sk) = tk for k= 1,...,4. Moreover, we let MI', shown in the 
lower part of Fig. 4, be the implementation of MS'. MS' has W = {aa} as a 
characterization set which is a state identifier of each state. In fact, we have 
the following output responses to aa. For state s1, xx. For state s2, xy. For 
state s3, yy,  and for state s4, yx. 

s 4s 2

a / xs 1

s 3
b / y a / y

b / x

b / x

b / x

a / x

a / y

m a p p i n g

m a p p i n g

m a p p i n g

m a p p i n g

t 4t 2

a / xt 1

t 3

b / y

a / y

b / x

b / x

b / x

a / x

a / y

s 4s 2

a / xs 1
s 3

b / y a / y

b / x

b / x

b / x
a / x

a / y

t 4t 2

a / xt 1
t 3

b / y

a / y

b / x

b / x

b / x
a / y

a / x

m a p p i n g

m a p p i n g

m a p p i n g
m a p p i n g

 
Figure 3.  MS and MI         Figure 4.  MS' and MI' 

We note that the modified implementation state t4 of MI' has the output 
response yy to aa, i.e. state s3 of MS' is W-equivalent to t4 of MI' while state 
s4 of MI' is W-equivalent to t3 of MI'. States t1 and t2 of MI' are W-
equivalent to s1 and s2 of MI'. The mapping is preserved for the modified 
transitions from states t3 and t4 under input a. However, it is not preserved 
for the unmodified transitions at states s3 of MS' and s4 of MS' under input b, 
i.e. MI' is a wrong implementation of MS'. Therefore, appropriate 
unmodified transitions also need to be checked in order to kill such a wrong 
mapping.  



  
 

As in the previous section, we select a prefix-closed state cover set with 
the following property. Given state sj∈S of MS' reachable through 
unmodified transitions, we select the sequence αj∈Q that does not traverse 
any modified transition.  

The re-testing method has two phases. In the first phase, some states of 
the modified specification are re-identified in the new implementation. It 
may occur that for some states of the modified specification that are only 
reachable through modified transitions their old image must still be 
preserved in the new implementation. In particular, those are the states that 
have a so-called stable identifier [7] that distinguishes a state from any other 
state in each possible implementation.  For each such state, we derive a state 
identifier (if it exists) that kills, through the re-identification phase, 
implementations where the state has a new image. We start from the set of 
states that are reachable through unmodified transitions. As in Case-2, the 
old mapping must still be valid for these states and only modified transitions 
from these states need to be checked. Moreover, given such a state, if the 
sequences of its state identifier do not traverse modified transitions then the 
state does not need to be re-identified. Otherwise, we select state re-
identification sequences using Formula (2-1a) of Case-2, where in order to 
check the new mapping of a state, say sj, we concatenate the sequence r.αj 
with each sequence of the state identifier of the sj that passes through a 
modified transition.  Then, we iteratively identify all other states for which 
the old mapping must be preserved; however, their state identifiers are 
derived in a proper way as described below. Afterwards, since each 
remaining state, say sj∈Sr-m, of the modified specification could have a new 
image, i.e. sj could be mapped to say tk∈Tr-m instead of the old image      
hS-I(sj) = tj, re-tests are selected to re-identify the image of sj in the new 
implementation, i.e. check (or establish) that sj is W-equivalent to tk, and to 
check that this mapping is conforming. In order to re-identify sj, re-tests are 
selected by concatenating r.αj with each sequence in the state identifier of 
state sj including sequences which traverse only unmodified transitions 
Moreover, in order to check that this mapping is a valid one (i.e. kill wrong 
mappings), re-tests are selected to check each outgoing transition from sj for 
correct output and ending state in the new implementation.  

In order to implement the above steps, we determine a subset Su of the set 
of states of the modified specification such that for the states in Su the old 
mapping between the states of the modified specification and its conforming 
modified implementation must still be preserved. The set Su enjoys a nice 
property. For each state in Su, we do not need to check its outgoing 
unmodified transitions. In the following paragraph, we determine which 
states may be in the set Su and derive the set Su together with a separating 
family F={W1, …, Wn} (or characterization set W) so that if the 



  
 
implementation passes the re-identification test sequences, then there exists 
one-to-one mapping h: S → T such that the following property holds. 

For each state si∈Su we have: si ≅wi  t ⇔ t = hS-I(si).                (X-2) 
First, we add to the empty set Su each state sj that is reachable from the 

initial state through unmodified transitions. As in Case-2, the images of these 
states have to be still preserved in the new implementation. Then, for state sj 
and each state si ∈ S, si≠ sj, we include in the state identifiers Wj and Wi a 
sequence that distinguishes the states sj and si in the modified specification. 
We note that, as discussed for Case-2, we recommend, while building the 
state identifier Wj, to select the sequences that do not pass through modified 
transitions if applied at state sj, since we do not need to apply these 
sequences while re-identifying sj. 

Afterwards, we iteratively include in Su each state sj ∈ S\Su, such that for 
each state si ∈ S\Su, si ≠ sj, there exists sequence βij that does not traverse 
modified transitions if applied at states si and sj and λS(si,  βij) ≠ λS(sj,  βij), 
or there exists input  x  such that transitions   (sj-x->sk) and (si-x->sr) are 
unmodified, sk ≠ sr and sk, sr ∈ Su. In the former case, we include sequence 
βij in Wi and Wj. Since βij does not traverse modified transitions if applied 
at states si and sj we have that ΛI(hS-I(si), βij) = λS(si, βij), and λS(sj, βij) ≠ 
ΛI(hS-I(si), βij). Thus, if βij is included into Wi and Wj and the 
implementation passes the corresponding state re-identification sequences, 
then sj is not W-equivalent to hS-I(si) (i.e hS-I(sj) ≠ hS-I(si)).  In the latter 
case, we include into Wi and Wj the sequence xβ where β  is a common 
prefix of the appropriate sequences in Wi and Wj such that λS(sk, β) ≠ 
λS(sr, β). Thus if ΛI(hS-I(si), x.β)=λS(si, x.β), then λS(sj, x.β) ≠ ΛI(hS-I(si), 
x.β). If x.β is included in Wi and Wj and the implementation passes the 
corresponding state re-identification sequences, then sj is not W-equivalent 
to hS-I(si). Due to the definition of state identifiers for states in Su, such a 
sequence exists. If any sequence of each state identifier is defined at each 
state then we derive the set W as the union of all state identifiers. We note 
that in order to kill for sj any mapping hI where hI(sj) ≠ hS-I(sj), the 
corresponding state re-identification sequences are derived by concatenating 
r.αj with every sequence of the set Wj (or W  for the Wp and W methods). 

Finally, we derive state identifiers for the remaining states in S\Su. For 
each state sj in S\Su and for each state si ∈ S, si ≠ sj, we include a sequence 
βij in Wi and Wj (if it does not already exist) such that λS(si,  βij) ≠ λS(sj,  
βij). In order to re-identify sj in the new implementation and kill its possible 
wrong images, the corresponding re-testing sequences include all re-
identification sequences and re-testing sequences for testing all outgoing 
transitions from state sj. 

The characterization set W (for the W, and Wp methods) can be obtained 
as the union of state identifiers Wi, i=1, …, n (if possible). We note that in 



  
 
order to reduce the number of transitions which need to be checked we use 
another technique than that based on stable state identifiers [7]. The main 
idea behind our approach is based on the observation that for each state 
reachable through unmodified transitions and some other states, the old 
image must be preserved in each conforming modified implementation. Our 
technique can also be used to reduce a test suite derived from a mutation 
machine [5] if the latter has many deterministic transitions.  

i) Phase of state re-identification  
For each state sj of the modified specification that needs to be re-

identified in the new implementation, we derive its state re-identification test 
sequences as follows: 

If αj does not traverse a modified transition, the re-identification 
sequences are formed as in Formula (2-1a). 

If αj traverses a modified transition then there are test sequences 
r.αj.Wj   (HIS method);           (3-1a) 
r.αj.W   (W and Wp methods).         (3-1b) 

Every sequence of the set Wj (or W) must be applied after αj, 
whether the sequence applied at state sj traverses a modified transition 
or not. 

ii) Phase of re-testing modified transitions 
For each modified edge (sj-x->sk), where sj ∈ Su, its corresponding test 

cases are formed as in Formulae (1-a) or (1-b). For each state sj ∉ Su, 
Formula (1-a) or (1-b) are applied for each outgoing transition from state sj 
including those which are unmodified.  

Theorem 4. Given the modified specification MS' and implementation 
MI', let Q be a prefix-closed state cover set of MS' and F = {W1, …, Wn} 
and W be a separating family and a characterization set (if exists) of the 
modified specification MS' derived as described above. If implementation 
MI' passes the re-testing test suite derived for Case-3, then the 
implementation is quasi-equivalent to MS'.  

Proof. As we demonstrated by the example, in Case 3, a one-to-one 
mapping h: S → T such that state si of MS' is Wi-equivalent to state h(si) of 
MI' can be different from hS-I. We first need to check whether the one-to-
one mapping h exists at all. 

We consider a relation h∈S×T such that: (sj, tj)∈h ⇔ sj ≅ Wj tj. If the 
implementation passes the re-identification test cases given by Formulae    
(2-1a), (3-1a) and (3-1b) then h is a one-to-one mapping h: S → T. We next 
show that h(sj) = hS-I(sj) holds for each sj∈ Su. 

Given state sj∈S of MS' such that the sequence αj∈Q does not traverse 
modified transitions, if MI' passes the test sequences given in Formulae (3-
1a) then the state hS-I(sj) = h(sj). The initial state s1 is in the set Su, i.e. the 
base of induction holds. 



  
 

Let us assume that h(s) = hS-I(s) holds for each state s of a current set Su 
and that state sj is the next state we are going to include into Su using the 
procedure described above. Since h is a one-to-one mapping, for each state 
s∈ Su it holds that h(sj) ≠ hS-I(s). On the other hand, for each state si ∈ S\ Su, 
i≠j, by construction of the state identifier, ∃ a sequence βij∈Wj∩Wi such that 
βij does not traverse modified transitions if applied at states si or sj and 
λS(si,  βij) ≠ λS(sj,  βij), or ∃ a sequence xβ∈Wj∩Wi  such that the final 
states of unmodified transitions (s-x->sk) and (si-x->sr) are different and 
λS(sk,  β) ≠ λS (sr,  β). In the former case, MI' has different output responses 
to the sequence βij∈Wj∩Wi at the states h(sj) and hS-I(si), i.e. h(sj) ≠ hS-I(si). 
In the latter case, MI' at states hS-I(sk) and hS-I(sr) has different output 
responses to the sequence β∈Wk∩Wr, i.e. MI' has different output responses 
to the sequence xβ∈Wk∩Wr at the states h(sj) and hS-I(si), i.e. h(sj) ≠hS-I(si). 
Therefore, by induction, h(sj) = hS-I(sj) for each state sj∈Su. 

For each unmodified transition (sj-a ->sl) from state sj∈Su it holds that 
λS(sj, a)=ΛI(hS-I(sj)) and hS-I(sl)=∆( hS-I(sj), a). 

If MI' passes the test cases r.αj.x.Wk for a modified transition (sj-x ->sk) 
then λS(sj, x)=ΛI(hS-I(sj), x) and the ending state of the transition (hS-I(sj)-x 
->tk) is Wk-equivalent to sk.  

Due to the construction of retesting sequences, we also check that (X-1) 
holds for each transition from each state sj∉Su. Thus, if MI' passes the test, 
then the mapping h satisfies (X-1), i.e. MI' is quasi-equivalent to MS' � 

As an application example for Case-3 with the HIS method, we add to the 
given specification a new state s'4 and its corresponding incoming and 
outgoing edges producing the modified specification MS' shown in Fig. 2. 

The state cover set of MS'  is Q'={ε, b, c, bc}. We consider each incoming 
and outgoing transition of the added state (here s'4) as a modified transition. 
Therefore, the modified transitions of MS' are (s'2-c/f->s'4), (s'4-b/f->s'4), 
(s'4-a/e->s'4), and (s'4-c/f->s'3).  

According to Case-3, we add to the set Su states s'1, s'2, and s'3 since 
these states are reachable through unmodified transitions and there exists a 
state identifier for each of these states that does not pass through modified 
transitions. In this example, the sequence bb is such an identifier. In fact, we 
have the following input/output sequences in response to bb. For state s'1, ff. 
For state s'2, fe. For state s'3, ef, and for state s'4, ee. 

These states, i.e., s'1, s'2, and s'3 , do not need  to be re-identified in the 
new implementation. In order to re-identify the added state s'4, the re-test 
sequence r.α4.W4 = r.bc.bb is selected using Formula (3-1a). If the modified 
implementation passes this sequence then there is a one-to-one mapping 
between states of the modified specification and implementation that are bb-
equivalent. 



  
 

Afterwards, in order to test the modified transition (s'2-c/f->s'4) whose 
head state s'2 is in Su, the sequence r.α2.c.W4 = r.b.c.bb is selected using 
Formula (1-a). Moreover, the following re-testing test sequences are selected 
using Formula (3-1c) in order to check the outgoing transitions from state 
s'4∈S\Su: r.α4.a.W4+r.α4.b.W4+r.α4.c.W3 = r.bc.a.bb+r.bc.b.bb+r.bc.c.bb 

Consequently, the re-testing test suite has sequences of total length 18. 
The traditional HIS method derives a test suite of length 32 if the whole 
specification of MS' is considered for test derivation. 

5. FURTHER RESEARCH WORK 

We have extended the re-testing methods presented in this paper for the 
case when the system implementation may have more states than its 
specification. Moreover, we are adapting these methods for a system 
modeled as an Extended Finite State Machine (EFSM). The problem here is 
to find an appropriate way for re-testing both the control flow and the data 
flow parts of a modified EFSM. Finally, we are investigating how the re-
testing methods can be applied to a labeled transition system (LTS). 
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